ENGINEERING NOTES:

There are some important "good engineering practice" guidelines that should be used when designing engineering plastic parts. Among those are:

SAFETY FACTORS – many properties, especially those with ultimate strength values, should be divided by 4 to arrive at a safe "working stress". For instance, if a material has a compressive strength of 12,000 psi, the part should be designed with 3,000 psi as its "working maximum pressure"

TEMPERATURE – all properties are reported at . 70°F-73°F, and are usually tested in a lab environment. Temperature affects all materials, but plastics more than most. As temperatures increase, properties tend to decrease (material softens); chemical resistance declines (chemicals are more aggressive at elevated temperature); materials themselves begin to oxidize from the surface inward, again reducing properties. As temperatures decrease, properties also change, especially impact resistance (cold materials are more brittle)

TIME – the longer a material is exposed to any external stress (thermal, chemical, electrical, mechanical), the more effect it will have on the material. With mechanical forces, a material can permanently deform under loads below the "vield point" (defined as the point where the material will no longer go back to its original size & shape); this is called "creep" or "cold flow" (time dependent deformation), which becomes more severe as temperature increases

TEST CRITERIA – it is critical to know which . tests can use different test methods to generate data. For instance, ASTM D-648 allows testing for the Heat Deflection Temperature to be run at either 66 psi, or the "normal" 264 psi. Obviously, the lower load generates a higher HDT

READ HOW A VALUE IS REPORTED – there are "word games" played to try to show how one supplier's material may be superior to another's. Take moisture absorption for cast nylon; a company might can report any of the following:

24 hour absorption (from a "dry" state), usually from 0.3% to 0.7%

• "Equilibrium" Content – the moisture content that, on average, will be absorbed from the material from ambient air in a given location, usually 2% to 4% (this one is usually a "red herring", depends totally on part of the country, storage conditions, time in storage, etc – but it's always LESS moisture reported than full saturation)

• Saturation – the maximum amount of moisture the material can absorb usually 7%.

SUMMARY: So, for the same basic material, you'll see numbers from 0.3% to 7% - are the materials really different? Reputable suppliers usually report 24 hour and full saturation values

FILLERS CHANGE PROPERTIES – ALWAYS report . the properties for the specific material being discussed. For instance, as compared to unfilled PEEK, 30% carbon fiber filled PEEK has different stiffness, heat transfer and wear properties - and loses its FDA compliance. (NOTE - colors usually do not affect properties but they can affect food compliance, etc)

ZL Central 10908 Strang Line Rd Lenexa, KS 66215 P: 913-327-0300 F: 913-327-0302 ZL West 8485 Unit D Artesia Blvd Buena Park, CA 90621 P: 714-523-0555 F: 714-523-4555

ZL Engineering Plastics proudly stocks the following materials:

Acetal Copolymer & Homopolymer (ZL®900 series)

Benefits: Excellent dimensional stability and ideal for wear applications in wet environments.

Limitations: Excessive wear in dry applications

Applications: Bearing and wear parts, solenoid blocks, hinge pins, scrapers, gears, sprockets, nozzles, pistons, dispensing heads, slide parts, washers, pump parts, guides, handles, fittings Industries: Transportation, food processing, medical and paper processing.

Stocked in plate, rod and tube (up to 20" diameter rod STOCKED) Stock colors available: natural, black and blue. (All colors FDA)

PET (ZL®1400 series)

Benefits: Combines the wear resistance of nylon with the dimensional stability of acetal, plus wears well in both wet and dry environments.

Limitations: Inherently brittle and poor resistance to bases Applications: Bearing and wear parts, scrapers, nozzles, pistons, dispensing heads, guides, slide parts, plungers, cams, tension wheels, fittings, pump parts, washers, valves, cams.

Industries: Transportation, food processing, bottling equipment. medical

Stocked in plate and rod (tube available on special order basis)

Stock colors available: natural and black. Internally lubricated bearing grade (ZL®1400T) stocked

Nvlon (ZL®250~Extruded & ZL®1100~Cast series)

Benefits: Outwears acetal by a factor of 3:1 in dry applications Limitations: Absorbs moisture resulting in increased wear and potential tolerance issues.

Applications: Bearings, bushings, rollers, guides, slide pads, sprockets, gears, star wheels, washers, chain guides, wear strips, rollers.

Industries: Construction, conveying, transportation, food processing, medical and paper processing.

Stocked in plate and rod

Stock colors available: natural and black.

PEEK (ZL®1500 series)

Benefits: Excellent wear resistance, continuous use temperature up to 480 °F, chemical resistance and stability.

Limitations: Typically much higher cost versus other mechanical plastics.

Applications: Valves, insulators, valve seats, pump wear rings, pump parts, washers, bearings, wafers

Industries: Construction, semiconductor, transportation, chemical processing, food processing, medical.

Stocked in plate and rod

Stock colors available: brown.

"Product material finder" tool available at www.zlplastics.com!!

Engineering Plastic Terms & Properties

for you

engineering plastics Simplified Suide

> **Presented by:** Professor 7

	Description	Why??		Description	Why??		Description	Why??
Specific Gravity (SG) or Density ASTM D-792	Ratio of the weight of a material compared to the weight of same volume	Determines the weight of a part. The higher the number, the heavier the material. Materials with a SG < 1.00 will float, as they are lighter than water	<mark>Elongation</mark> ASTM D-638	length when it breaks	Used in failure prevention analysis (don't overstretch the material!) It is a measure of stiffness more than the actual strength of a material.	Coefficient of Linear Thermal Expansion ACTMID 021	(CLTE) Measures how much a material shrinks or grows with changes in	Determines the allowance that must be designed to allow for material movement over a given temperature range (the larger the range, the more important this is); values reported are the "line" (average) in the graph from 30°F through 300°F
<u>Tensile</u> <u>S</u> <u>Strength</u> (ASTM D-638	of water Pulling force required to break a material (psi) (Tensile = "in tension" = pulling)	Determines how much load a given cross section of a given material can withstand in tension without breaking	<mark>al</mark> 1 <u>8</u> 790 A	a material can take before breaking A measure	Determines the max bending load a material a given cross section can withstand, whether fixed at one end with a load at the other, or suspended at both ends with the load in the middle Allows a calculation of how much a material will move (strain) under a given flexural load (stress).	Melt Point	temperature Gives the temperature at which a crystalline / semi- crystalline material melts	Most important for processing (extrusion) of polymeric materials, in service an engineering plastic will usually fail long before getting to this temperature.
<u>Tensile</u> <u>Modulus</u> ASTM D-638	A measure (psi) of how stiff a material is when in tension	Allows a calculation of how much a material will move (strain) under a given load (stress) when being pulled	A	flexed. A measure of how much	It represents a combination of the tensile strain (one side is stretching) PLUS the compressive strain (the other side is compressed) Determines how much load a given cross section of a given material can withstand in compression before deforming 10% of original cross section	ass Transition emperature	(becomes fluid) The "softening" temperature for amorphous materials	Important to companies doing thermoforming, this is the minimum temperature needed to be able to thermoform PC, PMMA, PET-G, etc
Flammability UL 94	A measure of the way a material burns under very specific conditions	Very important safety consideration; ratings are listed by material thickness; generally are obtained by the resin supplier; actual UL testing generates a "Yellow Card" for that resin	ssive Compressive us Strength 695 ASTM D-695	"squeezed") A measure	Allows a calculation of how much a material will	Use Gla (CUT) T	materials The maximum temperature at which a material can withstand, in	This is important for very lightly loaded parts that must withstand long term elevated temperatures; the material oxidizes over time and can become brittle. Few plastic parts see this type of service
Coefficient of Friction (COF)	Measures "slipperiness" of a material against another; with engineering plastics, usually against steel	Determines force required to start a material sliding (static COF) and to keep it moving (dynamic COF); important in designing slide bearings / wear pads; results are comparative only, not absolute values.	ear <u>Compres</u> 19th <u>Modul</u> D-695 ASTM D-	A measure of how much shearing force	move (strain) under a given load (stress) when being compressed Determines how much load a given cross section of a given material can withstand in shear without breaking	Continuous Temperature	air, for 100,000 hours (`11 years) with no load and still retain at least 50% of its physical properties	
<u>Dielectric</u> <u>Constant</u> ASTM D-150	Describes the ability of a material to store electrical energy (act as a capacitor)	Allows a designer to compare materials for their ability to store (inhibit) or "not store" (allow) electrical current to pass through it	<mark>rdness</mark> M D-785 A	take before breaking Determines resistance to indentation a given material can withstand	There are various test methods and scales, and except for materials reported in the same scale, there is no direct correlation between any two test methods! Within a scale, higher number = harder; most engineering plastics are reported	Heat Defle Tempera	The temperature where a ½" thick test bar deflects .010" Gives the rate	This is the "working stress" number, a fair indicator of the maximum operating temperature of a material under load, very important design consideration; usually reported with a load of 264 psi Determines the ability of a material to act as
Dissipation Factor ASTM D-150	Measures dielectric loss in an AC current	Dielectric loss is measured as heat, and since heat is normally NOT wanted, materials with low dissipation factors are preferred for electrical applications of all types.	<mark>pact</mark> nce Ha -256 AST		in Rockwell scales Allows comparison of materials using a specific impact criteria, it actually measures notch sensitivity; this is usually used in conjunction	Conductivi	Gives the rate at which heat is conducted through a material	a thermal insulator (the lower the value, the better the thermal insulation)
Moisture (Water) Absorption ASTM D-570	The percentage increase in the weight of a material based on how	This property addresses two areas: dimensional stability (the more water a material can absorb, the more it will grow); changes in properties – the more water a material absorbs, it generally becomes softer and less wear resistant	IZOD Impact Resistance ASTM D-256	the impact resistance, or "toughness", of a material	with other properties to determine best candidate materials in an impact environment	Dielectric Strength	The voltage where a 1mm sample fails as an electrical insulator	Basically, a comparative test only between materials, NOT a design criteria by itself
<u>Moistur</u> Absc ASTN	much water it absorbs, usually measured by "24 hour" and "saturation"	Ungin			expert advice on how to use material s to offer "best design" assistance! 866-957-5278	Volume Resistivity	Another measure of electrical insulation properties	Provides a means to estimate how many amps go through a material with a given application of volts; important when considering static dissipative material performance