

Engineering Plastic Stock Shapes for Machined Parts

Formulation	Color	ZL Product	Stocked?	Sheet	Rod	Tube
Acetal Copolymer	Natural	ZL® 900 C	YES			6
Acetal Copolymer	Black	ZL® 900 C BLK	YES			6
Acetal Copolymer	Blue	ZL ® 900 C Blue	YES			
Acetal Homopolymer (Delrin®150)	Natural	ZL® 900 H	YES			
Acetal Homopolymer (Delrin® 150)	Black	ZL® 900 H BLK	YES			
Acetal Copolymer Static Dissipative	lvory	ZL® 900 AS	YES			
PET	Natural	ZL® 1400	YES			
PET	Black	ZL® 1400 BLK	YES			*
PET w/ Solid Lubricant	Grey	ZL® 1400 T	YES		6	
Nylon 6/6	Natural	ZL® 250	YES			*0
Nylon 6/6	Black	ZL® 250 BLK	YES			*
Nylon 6/6 w/ MoS2	Black	ZL® 250 MO	YES			
Nylon 6/6 w/ 30% Glass	Black	ZL® 250 GF 30	YES			
Cast Nylon 6	Natural	ZL® 1100	YES			
Cast Nylon 6 w/ MoS ₂	Black	ZL® 1100 MO	YES			
PEEK (450G)	Brown	ZL® 1500	YES			

* Special order

MISSION

Our experienced team is committed to supplying quality engineering plastics to mutually grow buisness with our distribution partners.

- Same day shipping
- Over 100 years of combined industry sales experience
- ISO 9001:2018 certified
- Materials meet or exceed ASTM, Mil-Spec and Federal standards
- All extruded materials double annealed as a standard
- · All extruded materials ultrasound tested as a standard
- Production, stocking and sales in Lenexa, KS
- Backed with over 70 years of stock shape manufacturing experience by prominent European manufacture Zell-Metall GmbH

Material Descriptions

Acetal Copolymer (POM-C) offers much less centerline porosity compared to that of acetal homopolymer. As compared to acetal homopolymer, acetal copolymer offers superior hot water resistance; more resistance to strong alkalies and thermal-oxidative degradation; improved impact resistance and much lower outgassing.

Acetal Homopolymer (POM-H) is most commonly known by the E.I. Dupont trade name Delrin®. It offers higher crystallinity than copolymer acetal. Homopolymer acetal is harder, stronger, improved mechanical strength, stiffness, creep resistance and also has a lower thermal expansion rate than copolymer acetal.

Fast fact: Acetal provides excellent dimensional stability and is ideal for wear applications in wet environments.

Typical industries served: Conveying equipment, automotive, aerospace, food processing, medical & pharmaceutical equipment, forestry & pulp/paper processing

Typical applications: Bearings, bushings, solenoid blocks, hinge pins, wear pads, scraper blades, dispensing heads, cams, pistons, handles, pump parts, washers, sprockets & gears

PET also known as thermoplastic polyester, offers excellent wear and abrasion resistance in wet or dry environments. PET displays good hardness, stiffness and strength along with superb sliding properties. Good creep resistance, combined with low moisture absorption, it makes an excellent material choice for complex parts requiring excellent dimensional stability and surface quality. It also exhibits excellent resistance to acids and stain resistance.

Fast fact: PET combines the wear resistance of nylon with the dimensional stability of acetal, plus wears well in both wet and dry environments.

Typical industries served: Conveying equipment, automotive, aerospace, food processing, medical & pharmaceutical equipment, forestry & pulp/paper processing

Typical applications: Bearings, bushings, solenoid blocks, hinge pins, wear pads, scraper blades, dispensing heads, cams, pistons, handles, pump parts, washers, sprockets & gears

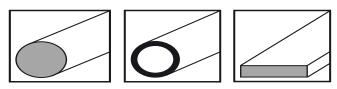
Nylon (PA 6.6 & PA 6) robust mechanical properties and wide range of size

availabilities have enabled nylon to achieve wide use as a replacement for more traditional materials in many diverse applications.

Fast fact: Nylon will outwear acetal by a factor of 3:1 in dry applications. However, in very wet applications, the opposite is true.

Typical industries served: Conveying equipment, automotive, aerospace, food processing, medical & pharmaceutical equipment, forestry & pulp/paper processing

Typical applications: Bearings, bushings, solenoid blocks, hinge pins, wear pads, scraper blades, dispensing heads, cams, pistons, handles, pump parts, washers, sprockets & gears


PEEK is a high temperature resistant material which exhibits a unique combination of: Good bearing and wear resistance, continuos use temperature up to 480°F, heat deflection temperature up to 320°F, retains good mechanical properties at temperature, excellent chemical resistance., (including steam), excellent stability (H2O absorption and CLTE), excellent resistance to high energy radiation and FDA compliant.

Fast fact: PEEK has replaced higher cost imidized materials in applications such as down-hole electrical connectors due to its excellent chemical and steam resistance.

Typical industries served: Conveying equipment, automotive, aerospace, food processing, medical & pharmaceutical equipment, forestry & pulp/paper processing

Typical applications: Bearings, bushings, solenoid blocks, hinge pins, wear pads, scraper blades, dispensing heads, cams, pistons, handles, pump parts, washers, sprockets & gears

Product Capability

ZL Product	Formulation	Color	Rod Diameters	Standard Length	Plate Thickness	Format
ZL® 900	Acetal Copolymer	Natural Black <mark>Blue</mark>	1/4"-12" 14"-20"	10 ft 3 ft and 4 ft	1/4"-6"	24"x48" - 48"x120"
ZL® 900 H	Acetal Homopolymer (Delrin® 150)	Natural Black	1/2"-6"	4 ft and 10 ft	1/2"-2 3/4" + thickness MTO	24"x48" - 48"x120"
ZL® 1400	PET	Natural Black	1/4"-8"	4 ft and 10 ft	1/4"-4"	24"x48"- 48"x120"
ZL® 1400 T	Internally Lubricated Bearing Grade PET	Light Grey	6mm - 160mm	3,000mm (10ft)	8mm - 100mm	24"x48" - 48"x120"
ZL® 250	Nylon 6/6	Natural	1/4"-6"	4 ft and 10 ft	1/4"-3"	24"x48"- 48" x 120"
ZL® 250 Black	Nylon 6/6	Black	1/4"-3"	4 ft and 10 ft	1/4"-1 1/2"	24" x 48" - 48" x 120"
ZL® 250 MO	Nylon 6/6 MoS2	Black	1/4"-2"	4 ft and 10 ft	3/8"-2"	24"x48"
ZL® 1100	Cast Nylon 6	Natural	2"-8" 8 1/4"-9"	4 ft	1/4" - 4"	24"x48" - 48"x120"
ZL® 1100 MO	Cast Nylon 6 MoS2	Black	2"-8" 8 1/4"-9"	4 ft	1/4"-6"	24"x48" - 48"x120"
ZL® 1500	PEEK (450G)	Brown	1/4"-6"	4 ft and 10 ft	1/4"-2 1/4"	24" x 48" - 39" x 78"

Custom lengths available made-to-order

700		opo	· y … o	1 10		Joad	GUOI	l Ou	Jubi	1100
OD	ID		OD	ID	1	OD	ID		OD	ID
mm	mm		mm	mm		mm	mm		mm	mm
25	10		55	25		70	50		90	30
25	12		55	30		70	55		90	40
25	15		55	35		70	60		90	50
25	20		55	45		75	25		90	60
30	15		55	50		75	35		90	70
30	20		60	20		75	40		90	75
35	15		60	25		75	45		90	80
35	20		60	30		75	50		100	35
35	25		60	35		75	60		100	40
35	30		60	40		75	65		100	50
40	15		60	45		80	30		100	60
40	20		60	50		80	35		100	70
40	25		60	55		80	40		100	80
40	30		65	30	1	80	45		100	85
40	35		65	35	1	80	50		100	90
45	20		65	40	1	80	60		110	40
45	25		65	45		80	65		110	45
45	30		65	50	1	80	70		110	50
45	35		65	55		85	30		110	60
50	20		70	25		85	40		110	70
50	25		70	30		85	60		110	80
50	30		70	35		85	65		110	90
50	35		70	40		85	70		120	50
50	40		70	45		85	75		120	60
					•					
OD	ID		OD	ID	1	OD	ID		OD	ID
mm	mm		mm	mm		mm	mm		mm	mm
120	70		150	100		190	140		260	170
120	80		150	110		190	160		260	190
120	90		150	120		200	70		265	90
120	100		160	50		200	90		265	210
125	80		160	60		200	100		270	90
125	90		160	80		200	130		280	100
125	100		160	90		200	140		280	140
125 130	50		160	100		200	150		280	210
130	60		160	120	1	200	160		280	240
130	80		160	130		210	150		300	90
130	90		160	140	1	210	160		300	100
130	100		170	60		220	70		310	130
130	110		170	80	1	220	75		350	200
140	60		170	100	1	220	160		400	200
140	70		170	120	1	220	190		400	300
140	80		170	130	1	230	120		450	200
140	90		170	140	1	230	160		450	300
140	100		180	70	1	230	170		500	200
140	110		180	100	1	230	190		500	300
140	120		180	110	1	250	70		500	375
150	50		180	120	1	250	150	0		
150	70		180	140	1	250	170		onver	SION:
150	80		180	150	1	260	130	05		4 00"
150	90		190	70		260	160	25.4	+mm =	= 1.00"
					•					

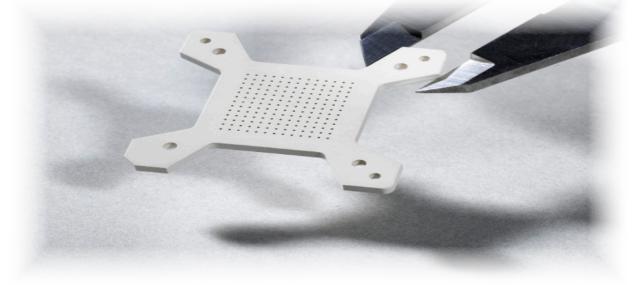
Acetal Copolymer Tube Production Capabilities Acetal Copolymer Tube Typical STOCKED Sizes

Acetai Oopt	Jymei lube	Typical STOC		
OD	ID	OD	ID	
25 mm	15 mm	120 mm	60 mm	
30 mm	15 mm	125 mm	80 mm	
35 mm	15 mm	130 mm	60 mm	
35 mm	25 mm	130 mm	90 mm	
40 mm	20 mm	130 mm	110 mm	
45 mm	25 mm	140 mm	80 mm	
50 mm	20 mm	140 mm	100 mm	
60 mm	30 mm	150 mm	70 mm	
60 mm	40 mm	150 mm	80 mm	
60 mm	50 mm	150 mm	120 mm	
65 mm	30 mm	160 mm	100 mm	
65 mm	55 mm	170 mm	100 mm	
70 mm	30 mm	180 mm	70 mm	
70 mm	50 mm	180 mm	120 mm	
80 mm	40 mm	180 mm	140 mm	
90 mm	40 mm	200 mm	130 mm	
90 mm	70 mm	200 mm	150 mm	
100 mm	40 mm	200 mm	190 mm	
100 mm	60 mm	220 mm	70 mm	
100 mm	70 mm	230 mm	170 mm	
100 mm	80 mm	* Typical stocked sizes. S	Stocked items subject	
110 mm	50 mm	prior to sell. * Additional sizes may be	availble as inventory	
110 mm	80 mm	changes. Please contact		
120 mm	50 mm	current availability.		

Please contact your ZL representative for size, configuration, and any minimum quantities for ZL Custom Products.

Product Compliance

ZL Product	Formulation	Color	FDA Compliant	USDA Compliant	3A Dairy Compliant	NSF 51/61 Compliant
ZL® 250	Nylon 6/6	Natural	Yes	Yes	Yes	61-Yes
ZL® 250 BLK	Nylon 6/6	Black	Yes	Yes	No	No
ZL® 250 MO	Nylon 6/6 w/ MoS ₂	Black	No	No	No	No
ZL® 250 GF 30	Nylon 6/6 w/ 30% Glass	Black	No	No	No	No
ZL® 1100	Cast Nylon 6	Natural	Yes	Yes	Yes	No
ZL® 1100 MO	Cast Nylon 6 w/ MoS ₂	Black	No	No	No	No
ZL® 900 C	Acetal Copolymer	Natural	Yes	Yes	Yes	51 & 61-Yes
ZL® 900 C BLK	Acetal Copolymer	Black	Yes	Yes	No	51 & 61-Yes
ZL® 900 Blue	Acetal Copolymer	Blue	Yes	Yes	No	N/A
ZL® 900 H	Acetal Homopolymer	Natural	Yes	Yes	Yes	51 & 61-Yes
ZL® 900 H BLK	Acetal Homopolymer	Black	Yes	Yes	No	51 & 61 - Yes
ZL® 900 AS	Acetal Copolymer Static Dissipative	lvory	Yes	Yes	No	No
ZL® 1400	PET	Natural	Yes	Yes	Yes	No
ZL® 1400 T	PET w/ Solid Lubricant	Grey	Yes	Yes	No	No
ZL® 1500	PEEK	Brown	Yes	Yes	Yes	51-Yes


Please note:

It is not part of our quality control to conduct tests to ensure the conformity. We depend on the statements of our raw material suppliers. It is the responsibility of the recipient of our products to ensure that any rights and existing laws and legislations are observed.

ASTM Standard Shape Guidelines

		Diameter Size	Diameter Tolerence	Rod Camber	Thickness Size	Thickness Tolerance	Length Camber	Width Bow
Material	ASTM	in	in	in / ft	in	in	in / ft	in / ft
ZL® 250 Extruded Nylon 6/6	ASTM D5989	1/4" - 7/8" 1" - 2" 2 1/8" - 2 3/4" 3" & over	+0.003 /-0 +0.005 /-0 +0.015 /-0 +0.250 /-0	2 1/2" / 8' 1 1/4" / 8' 1 1/4" / 8' 1/4" / 4'	1/4" - 7/8" 1" - 2" over 2"	+0.025 /-0 +0.025 /-0 +0.050 /-0	3/4" / 4' 1/4" / 4' 1/4" / 4"	3/16" / 2' 1/16" / 2' 1/16" / 2"
ZL® 1100 Cast Nylon 6	ASTM D5989	1" - 2 3/4" 3" & over	+0.015 /-0 +0.250 /-0	1/4" / 4' 1/4" / 4'	1/4" & over	+0.025 /-0	1/4" / 4'	1/16" / 2'
ZL® 900 Acetal Copolymer & Homopolymer	ASTM D6100	1/4" - 7/8" 1" - 2 3/8" 2 1/2" & over	+0.003 /-0 +0.005 /-0 +0.250 /-0	2 1/2" / 8' 1 1/4" / 8' 1" / 8'	1/4" - 1" 1 1/8" - 3" 3 1/8" & over	+0.025 /-0 +0.050 /-0 +0.125 /-0	3/4" / 4' 1/4" / 4' 1/4" / 4'	3/16" / 2' 1/16" / 2' 1/8" / 2'
ZL® 1400 PET	ASTM D6261	1/4" - 7/8" 1" - 1 7/8" 2" 2 1/8" - 2 1/2" 2 5/8" - 6"	+0.003 /-0.001 +0.005 /-0 +0.008 /-0 +0.030 /-0 +0.250 /-0	2 5/8" / 8' 1 3/8" / 8' 1 3/8" / 8' 1 1/8" / 8' 3/8" / 4'	1/4" - 2" 2 1/8" - 3" 3 1/8" & over	+0.025 /-0 +0.050 /-0 +0.350 /-0	3/4" / 4' 1/4" / 4' 1/4" / 4'	1/4" / 2' 1/8" / 2' 5/16" / 1'
ZL® 1500 PEEK	ASTM D6262	1/4" - 1" 1 1/8" - 2" 2 1/8" - 3" 3 1/4" & over	+0.003 /-0 +0.005 /-0 +0.030 /-0 +0.250 /-0	2 1/2" / 8' 1 1/4" / 8' 1 1/4" / 8' 1/4" / 4'	1/4" - 7/8" 1" & over	+0.025 /-0 +0.025 /-0	3/4" / 4' 1/4" / 4'	3/16" / 2' 1/16" / 2'

ZL's stock shape material tolerances meet or exceed ASTM standards.

All information is without warranty and liability. See legal notice on the back cover of this brochure

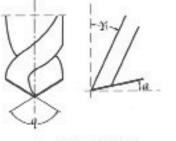
RESISTANCE TO CHEMICALS

		<u>Nylon 6/6</u> Cast Nylon 6	<u>Acetal copolymer</u> Acetal homopolymer	<u>PET</u>	<u>PEEK</u>
		ZL® 250 series ZL® 1100 series	ZL® 900C series ZL® 900H series	ZL® 1400 series	ZL® 1500 series
Chemical substance	%			ity and material stab	
Acetone	TR	A	A	C	A
Acetylchloride	TR	D	D		
Acetylene	TR	A	A	A	A
Alkylbenzoic	TR	А	A		
Alu. salts of min.acids	20	В	В	A	A
Formic acid	10	В	D	А	В
Ammonia	TR	В	A	D	A
Benzene, Benzaldehyde	Н	А	A	D	А
Chlorine moist	Н	D	D	В	D
Boric acid	10	A / B	A	А	А
Bromwater	GL	D	D		А
Butadien	TR	А	A	А	
n-Butyleneglycol	TR	А	A	А	А
Calcium chloride alcoholic	20		А		
Chlorine, Chlorine moist	Н	D	D	D	D
Chlorobenzene	TR	А	A	D	А
Chloroform	TR	В	С	D	A
Citric acid	10	А	A	А	A
aqueous	20	А			
Cyclohexane/Cyclopetone	TR	А	A	А	А
Dichlortrehylene	TR	D	D	D	A
Dichlortetrafluorethan	TR	А	A	А	A
Dimethyleter	TR			А	А
Inert Gas	TR	А	A	А	А
Developing liquid	Н	A	A	А	A
Mineral oil, Natural gas	Н	А	A	А	А
Acetic acid aqueous	95	D	D	С	A
Ethanol	96	А	A	A	A
Essential oils	Н	A	A	A	A
Alcoholic fat	Н	A	A	А	
Fatty acid	TR	A	A	A	Α
Flurinated hydrocarbons	Н	А	A	А	
Flurinated hydroacid aq.	40	D	D	D	
Fixer solution	Н	A	A	А	
Galvanic baths	Н	D	D		
Glycerine	TR	A	A	A	A
Glyceral	TR	A	A	A	A
Glyceral acid aqueous	30				
Glysantin	Н	A	A	D	
Uric acid aqueous	10	A	A	A	A
Helium and rare gas	TR	A	A	A	A
Heptan Hexan	TR	A	A	A	A
Hydraulic oils	Н	<u>A</u>	A	A	A
Impregnating oils	H	A	A	A	A
Isooctan	80	<u>A</u>	A	A	A
Isocyante	H	A	A	A	
Cold machine oil	H	A	A	A D	A
Potash lye	50	A			A
Potasiumchloride	10	A	A	A	A
Hydrofluoristic acid Carbon dioxide	30			D	 A
		A	A	A	A
Super Otto-fuel Diesel fuel	H	A A	A	 A	A
	H		A	A	A
Turbine aircraft fuel Kerosene	H	AA	A A	A A	A A
1/01/09/01/16	11	А	A	A	A

H: commercially GL: saturated aqueous solution [at 23 ° C] TR: technically pure A: resistant: only low weight and dimensional changes B: not resistant: significant weight, dimensions and property changes of the molding material C: inconstant: at long exposure D: unstable: within a short time strong attack

RESISTANCE TO CHEMICALS

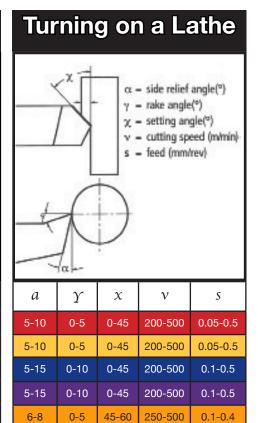
		<u>Nylon 6/6</u> <u>Cast Nylon 6</u>	<u>Acetal copolymer</u> Acetal homopolymer	<u>PET</u>	PEEK
		ZL® 250 series ZL® 1100 series	ZL® 900C series ZL® 900H series	ZL® 1400 series	ZL® 1500 series
Chemical substance	%		Resistances capac	ity and material stab	ility
Soldering solution	Н	D	D	A	A
Magnesium salt aqueous	10	А	A	А	A
Seawater		A	Α	A	A
Methan	TR	А	A	А	A
Methyl acetate	TR	А	В	В	A
Methylene Chloride	TR	B/C	D	D	А
Methylene Glycol	TR	А			A
Methylenglycolacetate	TR	А			
Mixed acids		D	D	D	
Engine oil	Н	A	А	А	
Naphtalene	Н	A	A	А	A
Naphtalenesulfanacids	TR	D	D	D	С
Sodium salts aqueous	10	A	A	A	A
Sodium salts hypophosphit aqu	10	А	A	А	
Sodium bisulfit aqueous	10	A	A	A	Α
Caustic soda solution	10	А	D	D	
Nitrobenzene	TR	В	А	А	А
Octane Octene	TR	А	A	А	А
Oleric acid	Н	А	A	А	A
Ozon	TR	B/C	B/C	B/C	A / B
Petroleum	TR	А	A	А	A
Phenylethylalcohol	TR	A / B			
Phosphoric acid	10	D	A	А	A
Phosphoric acid	85				
Propane	TR	А	A	А	А
Mercury	TR	А	А	А	А
Mercury chlorid aqueous	GL	D			A
Nitric acid	>50	D	С	С	В
Hydrochloric aqueous	>20	D	В	В	A
Oxygen under pressure	TR	А	А	А	A
Sulphurdioxid dry	TR	А			A
Sulphurdioxid moist	TR	В			A
Sulphereous acid	GL	В	A	A	A
Sulphuric acid	>80	D	D	D	A
Sodium Carbonate	10	A	A	A	A
Nitrogen gas	TR	A	А	А	A
Styrol	TR	A	A	Α	A
Turpentine oil	Н	А	A	А	A
Tetrachloride-carbon	TR	A	A	Α	
Transformer oil	Н	А	A	А	A
Trichlorethylene	TR	A / B	D	D	A
Uraniumfloride	TR	D	D	D	
Urin		Α	A	Α	A
Vinylchloride	TR	А	A	А	A
Steam	>100	B / D	D	D	A
Hydrogen	TR	A	A	A	A
Hydreogensuperoxid		A	A	A	
Acidity of Wine	10	A			A
Acidity of Wine	50	B			
Xylol	TR	A	В	B	A
Xylol	TR/10	<u>A</u>	D	D	
Zincchloride	10	B		А	A
Zincchloride	37,5	D			
Zinc		А	A	А	A

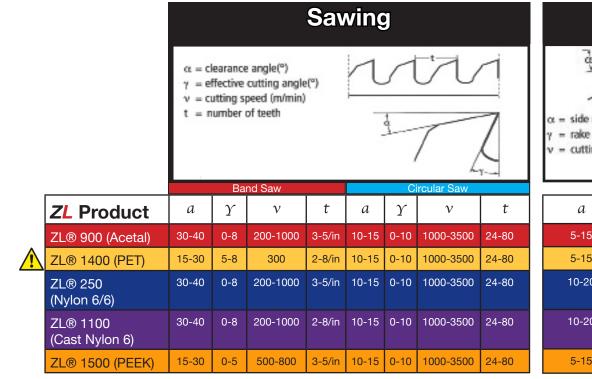

Machining Guidelines

Machining ZL® materials is easy, but use only sharp tools with high cutting speeds and low feed. In order to obtain exact dimensions, machining should be done in several steps to allow the

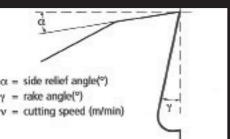
component to cool down properly. When drilling large diameters, start with a pilot hole of 10 - 12 mm. When machined, all corners should be rounded to avoid failure due to the notch effect.

Diamond coated tools and preheating of the stock shapes are recommended when machining glass-fiber filled engineering plastics. Drilling


 a = side relief angle(°)


 Y = rake angle(°)

 q = top angle(°)


v = cutting speed (m/min)
s = feed (mm/rev)

	a = leed (lillines)				
ZL Product	а	Ŷ	9	ν	5
ZL® 900 (Acetal)	5-10	3-5	60-90	50-100	0.1-0.3
ZL® 1400 (PET)	5-10	10-20	90	50-150	0.2-0.3
ZL® 250 (Nylon 6/6)	10-15	3-5	60-90	50-100	0.1-0.5
ZL® 1100 (Cast Nylon 6)	10-15	3-5	60-90	50-100	0.1-0.5
ZL® 1500 (PEEK)	5-10	10-30	90-120	70-200	0.1-0.3

а	Ŷ	ν
5-15	5-15	250-500
5-15	5-15	250-400
10-20	5-15	250-500
10-20	5-15	250-500
5-15	6-10	180-450

PRE-HEATING

Glass-filled, carbon-filled, and PET products should be pre-heated before sawing or drilling to optimize ideal machinability. The temperature should be between 90°C and 120°C with a heating and cooling rate of approximately 10°C per hour. All other materials should be at room temperature before machining.

Trade Name Cross Reference

Product Description	ZL Engineering Plastics	Mitsubishi Chemical Advanced Materials	Ensinger	Röchling	Polymer Industries	Cast Nylons LTD	Nylatech	Gehr
Nylon 6/6 Extruded Natural	ZL® 250 Nat	Nylon 101® Nat	Tecamid® 66-Nat	Sustamid® 66-Nat	Mechetec® Nylon	-	-	GEHR® PA (nylon)
Nylon 6/6 Extruded Black	ZL® 250 Blk	Nylon 101® Blk	Tecamid® 66-Blk	Sustamid® 66-Blk	Mechetec® Nylon	-	-	-
Nylon 6/6 Extruded MoS2	ZL® 250 MO	Nylatron® GS	Tecamid® MDS	Sustamid® 66-MoS2	Mechetec® Nylon	-	-	-
Nylon 6 Cast Natural	ZL® 1100 Nat	MC®-907	Tecast® 6PA-Nat	Sustamid® 6G-Nat	-	Nycast® 6PA-Nat	Nylatech® Nat	-
Nylon 6 Cast MoS2	ZL® 1100 MoS2	Nylatron® GSM	Tecast® 6PAM	Sustamid® 6G-MoS2	-	Nycast® 6PA MoS2	Nylatech® MD	-
Copolymer Acetal-Natural	ZL® 900 C Nat	Acetron® GP Nat	Tecaform AH® Nat	Sustarin® C Nat	Mechetec® Acetal	Acetal/ POM C	-	GEHR® POM-C Nat
Copolymer Acetal-Black	ZL® 900 C Blk	Acetron® GP Blk	Tecaform AH® Blk	Sustarin® C Blk	Mechetec® Acetal	Acetal/ POM C	-	GEHR® POM-C Blk
Copolymer Acetal-Blue	ZL® 900C Blue	-	Tecaform AH® FG Blue	-	-	-	-	-
Homopolymer Acetal-Natural	ZL® 900 H Nat	Delrin® Nat	Delrin® 150 Nat	Sustarin® H Nat	Mechetec® Delrin®	-	-	-
Homopolymer Acetal-Black	ZL® 900 H Blk	Delrin® Blk	Delrin® 150 Blk	Sustarin® H Blk	Mechetec® Delrin®	-	-	-
PET-Natural	ZL® 1400	Ertalyte® PET P-Nat	Tecapet® PET-Nat	Sustadur® PET	Mechetec® PET	-	-	GEHR® PET
PET-Black	ZL® 1400 Blk	Ertalyte® PET P-Blk	Tecapet® PET-Blk	-	-	-	-	-
PET-Solid Lubricant	ZL® 1400 T	Ertalyte® TX	-	Sustadur® PET TF	-	-	-	-
PEEK	ZL® 1500	Ketron® PEEK	Tecapeek®	SustPEEK®	Mechetec® PEEK			GEHR® PEEK

All information is without warranty and liability. See legal notice on the back cover of this brochure.

Product Property Terms Defined

		1	Description	W/00
R	X		Description	Why??
Specific Gravit	(SG) or Densit	ASTM D-792	Ratio of the weight of a material compared to the same volume of water	Determines the weight of a part. The higher the number, the heavier the material. Materials with a SG \leq 1.00 will float, as they are lighter than water
Tensile	Strength	ASIM D-638	Pulling force required to break a material (psi) at a given temperature (Tensile = "in tension" = pulling)	Determines how much load a given cross section of a given material can withstand in tension without breaking
Tensile	<u>Modulus</u>	STM D-638	A measure (psi) of how stiff a material is when in tension	Allows a calculation of how much a material will move (strain) under a given load (stress) when being pulled
	Flammability	UL 94 /	A measure of the way a material burns under very specific conditions	Very important safety consideration; ratings are listed by material thickness; generally are obtained by the resin supplier; actual UL testing generates a "Yellow Card" for that resin
	Coefficient of	Friction (COF)	Measures "slipperiness" of a material against another; with engineering plastics, usually against steel	Determines force required to start a material sliding (static COF) and to keep it moving (dynamic COF); important in designing slide bearings / wear pads; results are comparitve only,not absolute values
Dielectric	Constant	ASTM D-150	Describes the ability of a material to store electrical energy (act as a capacitor)	Allows a designer to compare materials for their ability to store (inhibit) or "not store" (allow) electrical current to pass through it
Dissipation	Factor	ASTMD-150	Measures dielectric loss in an AC current	Dielectric loss is measured as heat, and since heat is normally NOT wanted, materials with low dissipation factors are preferred for electrical applications of all types.
Moisture (Water)	<u>Absorption</u>	ASTM D-570	The percentage increase in the weight of a material based on how much water it absorbs, usu- ally measured by "24 hour" and "saturation"	This property addresses two areas: dimensional stability (the more water a material ca absorb, the more it will grow); changes in properties – the more water a material absorbs, it generally becomes softer and less wear resistant
	Elongation	ASTM D-638	The percentage (%) increase in a materials length when it breaks	Used in failure preention analysis (don't overstretch the material!) It is a measure of stiffness more than the actual strength of a material.
Flexural	<u>Strength</u>	ASTM D-790	A measure of how much bending force a material can take before breaking	Determines the max bending load a material in a given cross section can withstand, whether fixed at one end with a load at the other, or suspended at both ends with the load in the middle

			Description	Why??	
Compressive	Strength	ASTM D-695	A measure of how much weight a material can withstand in compression (being "squeezed")	Determines how much load a given cross section of a given material can withstand in compression before deforming 10% of original cross section	
<u>Flexural</u>	Modulus	ASTM D-790	A measure (psi) of how stiff a material is when being flexed.	Allows a calculation of how much a mate- rial will move (strain) under a given flexural load (stress). It represents a combination of the tensile strain (one side is stretching) PLUS the compressive strain (the other side is compressed)	
Compressive	<u>Modulus</u>	ASTM D-695	A measure (psi) of how stiff a material is when being compressed	Allows a calculation of how much a mate- rial will move (strain) under a given load (stress) when being compressed	
Shear	<u>Strength</u>	ASTM D-695	A measure of how much shearing force a material can take before breaking	Determines how much load a given cross section of a given material can withstand in shear without breaking. (when a paper is cut with scissors, the paper fails in "shear".)	
	Hardness	ASTM D-785	Durometer Rockwell scale Determines resistance to indentation a given material can withstand	There are various test methods and scales, and except for materials reported in the same scale, there is no direct correlation between any two of them! Within a scale, higher number = harder; most engineering plastics are reported in Rockwell scales	
IZUD Impact	Resistance	ASTM D-256	Method "A" (ft.lbs/in) A measure of the impact resistance, or "toughness", of a material	Allows comparison of materials using a specific impact criteria, it actually measures notch sensitivity; this is usually used in conjunction with other properties to determine best candidate materials in an impact environment	
Coefficient of Linear	Thermal Expansion	ASTM D-831	(CLTE) Measures how much a material shrinks or grows with changes in temperature	Determines the allowance that must be designed to allow for material movement over a given temperature range (the larger the range, the more important this is); values reported are the "line" (average) in the graph from 30°F through 300°F	¢

	Description	Why??			
<mark>Melt Point</mark> ASTM D-348 (fi)	Gives the temperature at which a crystalline / semi-crystalline material melts (becomes fluid)	Most important for processing (extrusion) of polymeric materials.			
Glass Transition Temperature ASTM D-348 (f)	The "softening" temperature for amorphous materials	Important to companies doing thermoforming, this is the minimum temperature needed to be able to thermoform PC, PMMA, PET-G, etc			
Continuous Use <u>Temperature (CUT)</u> UL 746 or resin data	The maximum temperature at which a mate- rial can with- stand, in air, for 100,000 hours (11 years) with no load and still retain at least 50% of its physical properties	This is important for very lightly loaded parts that must withstand long term elevated temperatures; the material ox- ides over time and can become brittle. Few plastic parts see this type of service			
Heat Deflection Temperature ASTIM D-648 (P)	The tempera- ture where a ½" thick test bar deflects .010"	This is the "working stress" number, a fair indicator of the maximum operating tempera- ture of a material under load, very important design consid- eration; usually reported with a load of 264 psi			
Thermal Conductivity ASTMD-5930	Gives the rate at which heat is conducted through a material	Determines the ability of a material to act as a thermal insulator (the lower the value, the better the thermal insula- tion)			
Dielectric Strength ASTM D-149	The voltage where a 1mm sample fails as an electrical insulator	Basically, a comparative test only between materials, NOT a design criteria by itself			
<u>Volume</u> <u>Resistivity</u> ASTM D-257	Another mea- sure of electri- cal insulation properties	Provides a means to estimate how many amps go through a material with a given application of volts; important when considering static dissipative material performance			
e de					

ing

Product Properties

	Test Method ASTM	Units	ZL® 250 Extruded Nylon 6/6	ZL® 250 MO Extruded Nylon 6/6 MoS2
Mechanical Properties				
Specific Gravity	D-792	gm/cm ³	1.14	1.16
Tensile Strength, 73° F	D-638	psi	12,000	10,000-14,000
Tensile Modulus, 73° F	D-638	psi	420,000	480,000
Elongation, Break, 73° F	D-638	%	60	120
Flexural Strength, 73° F	D-790	psi	15,000	17,000
Flexural Modulus, 73° F	D-790	psi	410,000	460,000
Compressive Strength, 73° F	D-695	psi	12,500	16,000
Compressive Modulus	D-695	psi	420,000	420,000
Impact Strength, Notched, 73° F	D-256	ft-lbs/in	0.6-0.9	0.5
Hardness, Rockwell	D-785	R	R121	R125
Hardness, Durometer, Shore D	2240	D	D80	D85
Shear Strength	D-732	psi	10,000	10,500
Coefficient of Friction against steel	-	-	0.25	0.20
Thermal Properties				
Deflection Temperature - 66 psi	D-648	°F	455	-
Deflection Temperature - 264 psi	D-648	°F	194	200
Maximum Temperature - Long Term	-	°F	220	220
Maximum Temperature - Short Term	-	°F	-	-
Melting Point		°F	500	500
Coefficient of Lineral Thermal Expansion	D-696	in/in/ °F	4x10 ⁻⁵	4x10 ⁻⁵
Thermal Conductivity	C-177	Btu-in/hr-ft2-°F	1.7	1.7
Electric Properties				
Dielectric Strength	D-149	V/mil	600	350
Dielectric Constant, 1kHz	D-150	-	3.9	3.7
Dissipation Factor, 1 kHz	D-150		0.02	0.02
Flammability	UL 94		V-2	V-2
Volume Resistivity, 73° F	D-257	ohm-cm	10 ¹⁵	-
Water Absorption Rates				
Water Absorption, 24 hrs. 73° F	D-570	%	1.2	1.0
Water Absorption, Saturation, 73° F	D-570	%	7.0	7.0

ZL® 250 GF30 30% Glass filled Extruded Nylon 6/6	ZL® 1100 Cast Nylon 6	ZL® 1100 MO Cast Nylon 6 MoS2	ZL® 900 C Acetal Copolymer	ZL® 900 H Acetal Homopolymer	ZL® 900 AS Antistatic Acetal Copolymer
*Alternative test method if notated					*Alternative test method if notated
1.35	1.15-1.16	1.15-1.17	1.41	1.42	1.35
*15,900 (ISO 527)	11,000-14,000	11,000-14,000	8,800	10,000	*6,000 (ISO 527)
*790,000 (ISO 527)	350,000-450,000	350,000-450,000	400,000	450,000	*230,000 (ISO 527)
*8 (ISO 527)	20-40	20-40	55	40	*15 (ISO 527)
*24,500 (ISO 527)	12,500-14,500	12,500-14,500	13,000	14,100	*8,700 (ISO 178)
	350,000-450,000	350,000-450,000	400,000	450,000	
	15,000	14,000	15,000	16,000	
*507,000 (ISO 604)	400,000	400,000	400,000	450,000	*275,000 (ISO 604)
*2.75 (ISO 179/1eU)	0.6-0.9	0.6-0.9	1.3	1.5	1.8
	R115-R120	R115-R120	R120(M80)	R122 (M94)	
D85	D78-D83	D85	D80-D82	D84	D74
	10,000-11,000	10,000-11,000	8,000	9,000	
	0.22	0.22	0.15	0.15	
	370	370	316	346	
	200	200	205	277	
266	200	200	180	180	194
392	300	300	-	-	266
500	420	420	335	347	329
	5.0x10 ⁻⁵	5.0x10 ⁻⁵	5.4x10⁻⁵	4.7x10 ⁻⁵	
	1.7	1.7	1.6	2.5	
*760 (IEC 60243)	500-600	400	2,100	3,000	1,400
	3.7	3.7	3.7	3.7	
	-	-	0.005	0.005	
HB	HB	HB	HB	HB	
*< 10 ¹² (IEC 60093)	10 ¹⁴	10 ¹⁵	10 ¹⁵	10 ¹⁵	10 ¹⁰
*1.5 (ISO 62)	0.6-1.2	0.6-1.2	0.22	0.25	
*5.5 (ISO 62)	5.0-6.0	5.0-6.0	0.9	0.9	0.8

Product Properties

	Test Method ASTM	Units	ZL® 1400 PET	ZL® 1400 T Bearing Grade PET	ZL® 1500 PEEK (Victrex® 450G)
Mechanical Properties					*Alternative test method if notated
Specific Gravity	D-792	gm/cm ³	1.38	1.44	1.30
Tensile Strength, 73° F	D-638	psi	11,500	10,900	*15,225 (ISO 527)
Tensile Modulus, 73° F	D-638	psi	400,000	360,000	*609,000 (ISO 527)
Elongation, Break, 73° F	D-638	%	70	5	*20 (ISO 527)
Flexural Strength, 73° F	D-790	psi	15,000	14,000	*23,200 (ISO 178)
Flexural Modulus, 73° F	D-790	psi	400,000	360,000	*565,000 (ISO 178)
Compressive Strength, 73° F	D-695	psi	15,000	15,000	17,100
Compressive Modulus	D-695	psi	420,000	400,000	*507,500 (ISO 604)
Impact Strength, Notched, 73° F	D-256	ft-lbs/in	0.7	0.8	*1.66 (ISO 179/1EA)
Hardness, Rockwell	D-785	R	R117(M94)	R117(M94)	R126(M99)
Hardness, Durometer, Shore D	2240	D	D83-D84	D83	*D86 (ISO 868)
Shear Strength	D-732	psi	8,000	8,500	7,600
Coefficient of Friction against steel	-	-	0.15	0.19	0.40
Thermal Properties					
Deflection Temperature - 66 psi	D-648	°F	-	-	-
Deflection Temperature - 264 psi	D-648	°F	175	180	320
Maximum Temperature - Long Term	-	°F	230	210	500
Maximum Temperature - Short Term	-	°F	-	-	572
Melting Point		°F	490	491	*644 (ISO 3146)
Coefficient of Lineral Thermal Expansion	D-696	in/in/ °F	3.9x10⁻⁵	4.5x10 ⁻⁵	2.6x10 ⁻⁵
Thermal Conductivity	C-177	Btu-in/hr-ft2-°F	2.0	1.9	1.75
Electric Properties					
Dielectric Strength	D-149	V/mil	400	-	*380 (IEC 60243)
Dielectric Constant, 1kHz	D-150		3.4	-	3.05
Dissipation Factor, 1 kHz	D-150		0.002	-	0.003
Flammability	UL 94		HB	HB	V-0
Volume Resistivity, 73° F	D-257	ohm-cm	-	-	*10 ¹⁵ (IEC 60093)
Water Absorption Rates					
Water Absorption, 24 hrs. 73° F	D-570	%	0.10	0.06	0.5
Water Absorption, Saturation, 73° F	D-570	%	0.9	0.47	0.5

Notes:

Legal Note

ZL® is a registered trademark of ZL Engineering Plastics, Inc.

The information submitted in this publication is offered as a possible helpful suggestion in experimentation for those to whom we supply our ZL® products. Since practical operating conditions do not always correspond with testing methods, the information given in this brochure can only be considered as an indication and not as a basis for calculations since allowances have to be made for field operating conditions. We accept no liability for the application, suitability, working or other use of our products or the consequences resulting therefrom.

The data given in this brochure does not relieve distributors, processors, OEMs or end-users from the responsibility of carrying out their own tests and experiments; neither do they imply any legally binding assurance of certain properties or of suitability for a specific purpose or application. Buyers and users of ZL® shall be obligated to inspect the quality and properties of the products; they accept full responsibility for the selection, use, and working of the products and the use of information and the consequences therefrom.

It is the responsibility of those who use ZL® products to ensure that any proprietary rights and existing laws and legislation are observed.

*Nylon 101, Nylatron, MC-907, Acetron, Ertalyte, Duratron, Ketron and PC 1000 are registered trademarks of Mitsubishi Chemical Group.

*Tecamid, Tecast, Tecaform, Tecpet, TECAPEI, Tecapeek, Tecenat, are registered trademarks of Ensinger, Inc. *Unipa, Unital, Unitep, Unitem, Unitrex, Unicar, are registered trademarks of Polymer Industries.

*Sustamid, Sustarin, Sustadur, Susta PEI, Susta PEEK, Sustanat are registered trademarks of Röchling Materials Corp.

*Nycast is a registered trademark of Cast Nylon LTD.

*Nylatech is a registered trademark of Nylatech, Inc.

*GEHR is a registered trademark of Gehr Plastics, Inc.

Research for the Trade Name Cross Reference page was based upon information available on above mentioned manufacture websites.

klepsch group- the plastic power network

North America Corporate Office ZL Engineering Plastics

10831 Renner Blvd Lenexa, KS 66219 Phone: 913-327-0300 Fax: 913-327-0302

Zell-Metall Engineering Plastics

10831 Renner Blvd Lenexa, KS 66219 *Production

Call Toll-Free in the U.S. and Canada (866) 957-5278 info@zlplastics.com www.zlplastics.com

Austria-Headquarters Worldwide Zell-Metall Engineering Plastics

Schulstrasse 16 5710 Kaprun, Austria Phone: +43 6547 8417 Fax: +43 6547 8890

zell-metall@zmk.at www.zellamid.com

All statements, technical information, and recommendations contained in this data base are presented in good faith, based upon tests believed to be reliable and practical field experience. The reader is cautioned, however, that ZL engineering plastics inc. cannot guarantee the accuracy or completeness of this information, and it is the customers responsibility to determine the suitability of ZL's products in any given application. ®Trademarks of ZL engineering plastics inc. Delrin® is a registered trademark of E.I. DuPont.